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1.3 Energy in a Coupled Circuit 

We saw that the energy stored in an inductor is given by 

        … (13) 

Consider the circuit in Fig. 1.10. We assume that currents 

𝑖1 and 𝑖2 are zero initially, so that the energy stored in the 

coils is zero. If we let 𝑖1 increase from zero to 𝐼1 while 

maintaining 𝑖2 = 0 , the power in coil 1 is 

        … (14)  

and the energy stored in the circuit is 

                      … (15) 

 

If we now maintain 𝑖1 = 𝐼1 and increase  𝑖2from zero to 𝐼2 the mutual voltage induced in coil 1 

is 𝑀12 𝑑𝑖2/𝑑𝑡 ,while the mutual voltage induced in coil 2 is zero, since 𝑖1 does not change. The 

power in the coils is now 

                     … (16) 

and the energy stored in the circuit is 

                     … (17) 

 

The total energy stored in the coils when both and have reached constant values is 

                     … (18) 

 If we reverse the order by which the currents reach their final values, the total energy will be  

                      … (19) 

 

Fig 1.10 The circuit for deriving 

energy stored in a coupled 

circuit. 



Since the total energy stored should be the same regardless of how we reach the final conditions, 

comparing Eqs. (18) and (19) leads us to conclude that 

 

& 

 

This equation was derived based on the assumption that the coil currents both entered the dotted 

terminals. If one current enters one dotted terminal while the other current leaves the other dotted 

terminal, in this case the total energy will be 

 

1.3.1 Coupling Coefficient  

The energy stored in the circuit cannot be negative because the circuit is passive. This means that 

                      … (20) 

 

To complete the square, we both add and subtract the term 𝑖1𝑖2√𝐿1𝐿2 on the right-hand side of 

Eq. (20) and obtain 

                      … (21) 

The squared term is never negative; at its least it is zero. Therefore, the second term on the right-

hand side of Eq. (21) must be greater than zero; that is, 

                      … (22) 

Where 𝑘 is the coupling coefficient and 0 ≤ 𝑘 ≤ 1  equivalently  0 ≤ 𝑀 ≤ √𝐿1𝐿2 . The coupling 

coefficient is the fraction of the total flux emanating from one coil that links the other coil. For 

example, in Fig. 1.2, and in Fig. 1.3, 

        &  



Depending on the value of the coupling coefficient, we can classify the status of the mutual 

coupling into three cases:-  

1- If the entire flux produced by one coil links another coil, then 𝒌 = 𝟏 and we have 100 

percent coupling, or the coils are said to be perfectly coupled. 

2- For 𝒌 > 𝟎. 𝟓 , they are said to be tightly coupled. 

3- For 𝒌 < 𝟎. 𝟓 , they are said to be loosely coupled. 

We expect 𝑘 to depend on the closeness of the two coils, their core, their orientation, and their 

windings. Figure 1.11 shows loosely coupled windings and tightly coupled windings. The air-

core transformers used in radio frequency circuits are loosely coupled, whereas iron-core 

transformers used in power systems are tightly coupled. The linear transformers discussed in 

Section 1.4 are mostly air-core; the ideal transformers discussed in Sections 1.5 &1.6 are 

principally iron-core. 

 

 

 

 

 

Fig 1.11 Windings: (a) loosely coupled, (b) tightly coupled; 

cutaway view demonstrates both windings. 



Example 1.3/  Consider the circuit in Fig. 1.12. Determine the coupling coefficient. Calculate the 

energy stored in the coupled inductors at time 𝑡 = 1 𝑠 if 𝑣 = 60 cos(4𝑡 + 30°) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.12 For Example 1.3. 



1.4 Linear Transformers 

Here we introduce the transformer as a new circuit 

element. A transformer is a magnetic device that takes 

advantage of the phenomenon of mutual inductance. A 

transformer is generally a four-terminal device comprising 

two (or more) magnetically coupled coils. As shown in 

Fig. 1.13, the coil that is directly connected to the voltage 

source is called the primary winding. The coil connected 

to the load is called the secondary winding.  

The resistances 𝑅1 and 𝑅2 are included to account for the losses (power dissipation) in the coils. 

The transformer is said to be linear if the coils are wound on a magnetically linear material—a 

material for which the magnetic permeability is constant. Such materials include air, plastic, 

Bakelite, and wood. In fact, most materials are magnetically linear. Linear transformers are 

sometimes called air-core transformers, although not all of them are necessarily air-core. They 

are used in radio and TV sets. Figure 1.4 portrays different types of transformers. 

  

 

 

 

 

  

 

 

(a)            (b) 

 

 

Fig 1.13 A linear transformer. 

Fig 1.14 Different types of transformers: (a) copper 

wound dry power transformer, (b) audio transformers. 



We would like to obtain the input impedance 𝑍𝑖𝑛 as seen from the source, because 𝑍𝑖𝑛 governs 

the behavior of the primary circuit. Applying KVL to the two meshes in Fig. 1.13 gives 

         … (23) 

         … (24) 

From Eq. (24), 𝑰𝟐 =
𝒋𝝎𝑴

𝑹𝟐+𝒋𝝎𝑳𝟐+𝒁𝑳
 𝑰𝟏, if we substitute it into Eq. (23). We get the input 

impedance as 

  

         … (25) 

 

Notice that the input impedance comprises two terms. The first term, (𝑹𝟏 + 𝒋𝝎𝑳𝟏 ), is the primary 

impedance. The second term is due to the coupling between the primary and secondary windings. 

It is as though this impedance is reflected to the primary. Thus, it is known as the reflected 

impedance 𝒁𝑹 and 

 

 

 

Example 1.4/ In the circuit of Fig. 1.15, calculate the input impedance and current 𝑰𝟏 . Take  𝑍1 =

60 − 𝑗100 Ω , 𝑍2 = 30 + 𝑗40 Ω and 𝑍𝐿 = 80 + 𝑗60 Ω 

 

 

 

 

 

 

 

Fig 1.15 For Example 1.4. 



1.4.1 T & π Equivalent Circuit for  Linear Transformer 

The little bit of experience gained in the previous sections  

in analyzing magnetically coupled circuits is enough to 

convince anyone that analyzing these circuits is not as easy 

as circuits in previous chapters. For this reason, it is 

sometimes convenient to replace a magnetically coupled 

circuit by an equivalent circuit with no magnetic coupling. 

We want to replace the linear transformer in Fig. 1.16 by 

an equivalent T or π circuit, a circuit that would have no 

mutual inductance. 

The voltage-current relationships for the primary and secondary coils give the matrix equation 

                      … (26) 

 

By matrix inversion, this can be written as 

 

                      … (27) 

 

Our goal is to match Eqs. (26) and (27) with the corresponding equations for the T and π 

networks. 

A-  T Equivalent Circuit  

 For the T (or Y) network of Fig. 1.17, mesh analysis provides the terminal equations as 

                     … (28) 

 

  

 

 

Fig 1.16 Determining the equivalent 

circuit of a linear transformer. 

Fig 1.17 An equivalent T circuit. 



If the circuits in Figs. 116 and 1.17 are equivalents, Eqs. (26) and (28) must be identical. Equating 

terms in the impedance matrices of Eqs. (26) and (28) leads to 

 

 

B- π Equivalent Circuit  

For the π (or 𝚫) network in Fig. 1.18, nodal analysis 

gives the terminal equations as 

 

          

        … (29) 

 

Equating terms in admittance matrices of Eqs. (27) and (29), we obtain 

 

Note that in Figs. 1.17 and 1.18, the inductors are not magnetically coupled. Also note that 

changing the locations of the dots in Fig. 1.16 can cause 𝑀 to become −𝑀 . 

 

 

 

 

Fig 1.18 An equivalent π circuit. 



Example 1.5/  Solve for 𝐼1, 𝐼2 and 𝑉0 in Fig. 1.19 using the T-equivalent circuit for the linear 

transformer. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.19 For Example 1.5. 



1.5 Ideal Transformers 

An ideal transformer is one with perfect coupling (𝒌 = 𝟏 

). It consists of two (or more) coils with a large number of 

turns wound on a common core of high permeability. 

Because of this high permeability of the core, the flux links 

all the turns of both coils, thereby resulting in a perfect 

coupling, so a transformer is said to be ideal if it has the 

following properties: 

1- Coils have very large reactances (𝑳𝟏, 𝑳𝟐, 𝑴 → ∞) 

2- Coupling coefficient is equal to unity (𝑲 = 𝟎) 

3- Primary and secondary coils are lossless(𝑹𝟏 = 𝑹𝟐 = 𝟎) 

Figure 1.20(a) shows a typical ideal transformer; the circuit 

symbol is in Fig. 1.20(b). The vertical lines between the 

coils indicate an iron core as distinct from the air core used 

in linear transformers. The primary winding has 𝑵𝟏 turns; 

the secondary winding has 𝑵𝟐 turns. 

When a sinusoidal voltage is applied to the primary 

winding as shown in Fig. 1.21, the same magnetic flux 𝝓 

goes through both windings. According to Faraday’s law, 

the voltage across the primary winding and secondary 

winding are 

      ,                    … (30) 

where 𝒏 is the turns ratio or transformation ratio. 

For the reason of power conservation, the energy supplied to the primary must equal the energy 

absorbed by the secondary, since there are no losses in an ideal transformer. This implies that 

                     … (31) 

Fig 1.20 (a) Ideal transformer, (b) 

circuit symbol for ideal 

transformers. 

Fig 1.21 Relating primary and 

secondary quantities in an ideal 

transformer. 

In Phasor  

In Phasor  



So, depending on the value of 𝒏, we can know the type of transformer as the following:- 

1- 𝒏 = 𝟏 𝒐𝒓  𝑽𝟐 = 𝑽𝟏, we generally call the transformer an isolation transformer. 

2- 𝒏 > 𝟏 𝒐𝒓  𝑽𝟐 > 𝑽𝟏, we have a step-up transformer. 

3- 𝒏 < 𝟏 𝒐𝒓  𝑽𝟐 < 𝑽𝟏, we have a step-down transformer. 

Power companies often generate at some convenient 

voltage and use a step-up transformer to increase the 

voltage so that the power can be transmitted at very high 

voltage and low current over transmission lines, resulting 

in significant cost savings. Near residential consumer 

premises, step-down transformers are used to bring the 

voltage down to 220 V. 

It is important that we know how to get the proper polarity 

of the voltages and the direction of the currents for the 

transformer in Fig. 1.21. If the polarity of 𝑉1 or 𝑉2 or the 

direction of 𝐼1 or 𝐼2 is changed, 𝒏 in Eqs. (30) and (31) may 

need to be replaced by −𝒏 .The two simple rules to follow 

are: 

1- If  𝑉1 and 𝑉2 are both positive or both negative at the 

dotted terminals, the transformer ratio will be +𝒏 . 

Otherwise, use – 𝒏 . 

2- 2. If 𝐼1 and 𝐼2both enter into or both leave the dotted 

terminals, the transformer ratio will be  +𝒏 . 

Otherwise, use – 𝒏 . 

The rules are demonstrated with the four circuits in Fig. 1.22. 

  

  

 
Fig 1.22 Typical circuits illustrating 

proper voltage polarities and 

current directions in an ideal 

transformer. 



1.5.1 Compute 𝒁𝒊𝒏 𝒐𝒇 𝑰𝒅𝒆𝒂𝒍 𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒓𝒔 

The input impedance as seen by the source in Fig. 1.21 is found from 

        … (32) 

It is evident from Fig. 1.21 that 𝑉2/𝐼2 = 𝑍𝐿 so that 

        … (33) 

The input impedance is also called the reflected 

impedance, since it appears as if the load impedance is 

reflected to the primary side. This ability of the 

transformer to transform a given impedance into another 

impedance provides us a means of impedance matching 

to ensure maximum power transfer. 

In analyzing a circuit containing an ideal transformer, it is 

common practice to eliminate the transformer by 

reflecting impedances and sources from one side of the 

transformer to the other. In the circuit of Fig. 1.23, suppose 

we want to reflect the secondary side of the circuit to the 

primary side. We find the Thevenin equivalent of the 

circuit to the right of the terminals a-b. We obtain 𝑉𝑇ℎ as 

the open-circuit voltage at terminals a-b, as shown in Fig. 

1.24(a). 

Since terminals a-b are open 𝐼1 = 0 = 𝐼2, so that 𝑉2 = 𝑉𝑠2. Hence, 

        …(34) 

To get we remove the voltage source in the secondary winding and insert a unit source at terminals 

a-b, as in Fig. 1.24(b). 

        …(35) 

 

Fig 1.23 Ideal transformer circuit 

whose equivalent circuits are to 

be found. 

Fig 1.24 (a) Obtaining 𝑉𝑇ℎ for the 

circuit in Fig. 1.23, (b) obtaining 

𝑍𝑇ℎ for the circuit in Fig. 1.23. 



Once we have 𝑉𝑇ℎ and 𝑍𝑇ℎ we add the Thevenin 

equivalent to the part of the circuit in Fig. 1.23 to the left 

of terminals a-b. Figure 1.25 shows the result. 

In the same strategy,  we can also reflect the primary side 

of the circuit in Fig. 1.23 to the secondary side. Figure 1.26 

shows its equivalent circuit. 

Also note that if the locations of the dots in Fig. 1.23 are 

changed, we might have to replace 𝒏 by −𝒏 in order to 

obey the dot rule, illustrated in Fig. 1.22.  

 

 

 

 

 

1.5.2 𝑪𝒐𝒎𝒑𝒍𝒆𝒙 𝑷𝒐𝒘𝒆𝒓 𝒐𝒇 𝑰𝒅𝒆𝒂𝒍 𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒓𝒔 

The complex power in the primary winding is 

𝐒𝟏 = 𝐕𝟏 𝐈𝟏
∗           𝑲𝑽𝑨     … (36) 

As 𝐕𝟏 = 𝐕𝟐/𝐧 , 𝐈𝟏 = 𝐧𝐈𝟐 , so Eq. (36) will be  

        … (37) 

Eq. (37) is showing that the complex power supplied to the primary is delivered to the secondary 

without loss. The transformer absorbs no power. Of course, we should expect this, since the ideal 

transformer is lossless. 

 

 

Fig 1.25 Equivalent circuit for Fig. 

1.23 obtained by reflecting the 

secondary circuit to the primary 

side. 

Fig 1.26 Equivalent circuit for Fig. 

1.23 obtained by reflecting the 

primary circuit to the secondary 

side. 



Example 1.6/ Calculate the power supplied to the 10 Ω resistor in the ideal transformer circuit 

of Fig. 1.27. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.27 For Example 1.6. 



1.6 Ideal Autotransformers 

Unlike the conventional two-winding transformer we have 

considered so far, an autotransformer has a single 

continuous winding with a connection point called a tap 

between the primary and secondary sides. The tap is often 

adjustable so as to provide the desired turns ratio for 

stepping up or stepping down the voltage. This way, a 

variable voltage is provided to the load connected to the 

autotransformer. 

Figure 1.28 shows a typical autotransformer. As shown in 

Fig. 1.29, the autotransformer can operate in the step-

down or step up mode. The autotransformer is a type of 

power transformer. Its major advantage over the two-

winding transformer is its ability to transfer larger 

apparent power. Another advantage is that an 

autotransformer is smaller and lighter than an equivalent 

two-winding transformer.  However, since both the 

primary and secondary windings are one winding, 

electrical isolation (no direct electrical connection) is lost. 

Some of the formulas we derived for ideal transformers 

apply to ideal autotransformers as well. For the step-down 

autotransformer circuit:- 

                … (38) 

As an ideal autotransformer, there are no losses, so the 

complex power remains the same in the primary and 

secondary windings:  

                      … (39) 

Fig 1.28 A typical autotransformer. 

Fig 1.29 (a) Step-down 

autotransformer, (b) step-up 

autotransformer. 



For the step-up autotransformer circuit:- 

   or                    … (40) 

The complex power given by Eq. (39) also applies to the step-up autotransformer so that Eq. (40) 

again applies. Hence, the current relationship is 

                      … (41) 

 

A major difference between conventional transformers and autotransformers is that the primary 

and secondary sides of the autotransformer are not only coupled magnetically but also coupled 

conductively. The autotransformer can be used in place of a conventional transformer when 

electrical isolation is not required. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 1.7/ Refer to the autotransformer circuit in Fig. 1.30. Calculate: (a) 𝐈𝟏and 𝐈𝟐 Io if  𝐙𝐋 =

𝟖 + 𝐣𝟔 𝛀 ,and (b) the complex power supplied to the load. 

 

Fig 1.30 For Example 1.7. 


