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1.3Energy in a Coupled Circuit

We saw that the energy stored in an inductor is given by ; M ;
L AL Yy <2
“'- — ?L!’_ (13) + +
- L] i ] .
Consider the circuit in Fig. 1.10. We assume that currents L = g;f L
" = = 2 )
i, and i, are zero initially, so that the energy stored in the )
coils is zero. If we let i; increase from zero to I; while o o

maintaining i, = 0, the power in coil 1 is _ o o
Fig 1.10 The circuit for deriving

energy stored in a coupled

di
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and the energy stored in the circuit is
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If we now maintain i; = I, and increase i,from zero to I, the mutual voltage induced in coil 1

is M,, di,/dt ,while the mutual voltage induced in coil 2 is zero, since i; does not change. The

power in the coils is now
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and the energy stored in the circuit is
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The total energy stored in the coils when both and have reached constant values is
1 . ] 5
w = w; +wy,= LI+ ZLI5 + M, 111, ... (18)

If we reverse the order by which the currents reach their final values, the total energy will be

1 > 1 )
w = ?LHIT + TLE"’E + 4'1ff2|j|fr: (19)



Since the total energy stored should be the same regardless of how we reach the final conditions,

comparing Eqgs. (18) and (19) leads us to conclude that

1 ) 1 .
‘M"IJ = 4'143 =M & w = ?Lp‘ri + ?szri + ;1-’;"1"”,3

This equation was derived based on the assumption that the coil currents both entered the dotted
terminals. If one current enters one dotted terminal while the other current leaves the other dotted

terminal, in this case the total energy will be

1, 1,
w = :LJT + :Lgfii — ;'1»’”]1'3

1.3.1 Coupling Coefficient

The energy stored in the circuit cannot be negative because the circuit is passive. This means that

R S .
~ Lyit + S Loiz — Miyi, = 0 ... (20)

To complete the square, we both add and subtract the term i;i,./L;L, on the right-hand side of

Eg. (20) and obtain

] — —2 s
TH| \-'LJ — fl\-'LJJ_ + 1415 \-‘L|L3 — M) =0 ... (21)

The squared term is never negative; at its least it is zero. Therefore, the second term on the right-

hand side of Eq. (21) must be greater than zero; that is,
VL, L, — M =0 ‘ M = VL,L, ‘ M = kN LiL, .. (22)

Where k is the coupling coefficientand 0 < k < 1 equivalently 0 < M < ,/L,L, . The coupling

coefficient is the fraction of the total flux emanating from one coil that links the other coil. For
example, in Fig. 1.2, and in Fig. 1.3,
{f} 12 (,?_{)]1 ('.'f"z| d}ll
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Depending on the value of the coupling coefficient, we can classify the status of the mutual

coupling into three cases:-

1- If the entire flux produced by one coil links another coil, then k = 1 and we have 100
percent coupling, or the coils are said to be perfectly coupled.

2- For k > 0.5 , they are said to be tightly coupled.

3- For k < 0.5, they are said to be loosely coupled.

We expect k to depend on the closeness of the two coils, their core, their orientation, and their
windings. Figure 1.11 shows loosely coupled windings and tightly coupled windings. The air-
core transformers used in radio frequency circuits are loosely coupled, whereas iron-core
transformers used in power systems are tightly coupled. The linear transformers discussed in

Section 1.4 are mostly air-core; the ideal transformers discussed in Sections 1.5 &1.6 are

principally iron-core.

Auir or ferrite core

Fig 1.11 Windings: (a) loosely coupled, (b) tightly coupled;
cutaway view demonstrates both windings.



Example 1.3/ Consider the circuit in Fig. 1.12. Determine the coupling coefficient. Calculate the

energy stored in the coupled inductors at time t = 1 s if v = 60 cos(4t + 30°)
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Fig 1.12 For Example 1.3.



1.4Linear Transformers

Here we introduce the transformer as a new circuit R, (—\* R,
. . . My AU
element. A transformer is a magnetic device that takes ol IL
_ v M) ug En M) ||z
advantage of the phenomenon of mutual inductance. A ' |‘ 1
transformer is generally a four-terminal device comprising Primary coil Secondary coil

two (or more) magnetically coupled coils. As shown in
Fig. 1.13, the coil that is directly connected to the voltage

Fig 1.13 A linear transformer.

source is called the primary winding. The coil connected

to the load is called the secondary winding.

The resistances R, and R, are included to account for the losses (power dissipation) in the coils.
The transformer is said to be linear if the coils are wound on a magnetically linear material—a
material for which the magnetic permeability is constant. Such materials include air, plastic,
Bakelite, and wood. In fact, most materials are magnetically linear. Linear transformers are
sometimes called air-core transformers, although not all of them are necessarily air-core. They

are used in radio and TV sets. Figure 1.4 portrays different types of transformers.
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Fig 1.14 Different types of transformers: (a) copper
wound dry power transformer, (b) audio transformers.



We would like to obtain the input impedance Z;,, as seen from the source, because Z;,, governs

the behavior of the primary circuit. Applying KVL to the two meshes in Fig. 1.13 gives

V = (R, + joL)l;, — joMI, - (23)
0 = —joM1; + (R + joL, + Z)] .. (24)
. joM . . . .
From Eq. (24), I, = Ry tjolytZy I, if we substitute it into Eq. (23). We get the input
impedance as
Zi = V=R, + joly + WM 25
i e R el + 7 - (23)

Notice that the input impedance comprises two terms. The first term, (R4 + jwL4 ), isthe primary
impedance. The second term is due to the coupling between the primary and secondary windings.
It is as though this impedance is reflected to the primary. Thus, it is known as the reflected

Impedance Z and

Example 1.4/ In the circuit of Fig. 1.15, calculate the input impedance and current I . Take Z; =
60 —j100Q,Z, =30+ 40Qand Z;, =80+ j60 Q

j50

Z, Z,
| I | | | I |
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50,/60° V k:;‘. ) j20 0 =< 5: j40 0 :,13: 7

Fig 1.15 For Example 1.4.



1.4.1 T & n Equivalent Circuit for Linear Transformer

The little bit of experience gained in the previous sections

in analyzing magnetically coupled circuits is enough to | M L
convince anyone that analyzing these circuits is not as easy i —
as circuits in previous chapters. For this reason, it is "~+| Ll'[é"': F:"L: :}
sometimes convenient to replace a magnetically coupled ~ ; __

circuit by an equivalent circuit with no magnetic coupling.
. R Fig 1.16 Determining the equivalent
We want to replace the linear transformer in Fig. 1.16 by circuit of a linear transformer.

an equivalent T or 7t circuit, a circuit that would have no

mutual inductance.

The voltage-current relationships for the primary and secondary coils give the matrix equation

- [ =L
v, joM  jwL,] |1,
By matrix inversion, this can be written as
i L, —M g
[n] _ | jolily — M?) jo(LiL, — M?) [h'
I, —M L, V, ] ... (27)
| jw(L,L, — M?)  jo(L,L, — M?) |

Our goal is to match Egs. (26) and (27) with the corresponding equations for the T and &

networks.
A- T Equivalent Circuit

For the T (or Y) network of Fig. 1.17, mesh analysis provides the terminal equations as

[x',] B [jmif_“. + L) jwlL, ] [ll' ... (28)
Vs, JjowL, Jjow(Ly + L) |1 ]

Fig 1.17 An equivalent T circuit.



If the circuits in Figs. 116 and 1.17 are equivalents, Eqgs. (26) and (28) must be identical. Equating

terms in the impedance matrices of Egs. (26) and (28) leads to

LI.:? = Lz - M, Lr_' =M

B- @ Equivalent Circuit

For the &t (or A) network in Fig. 1.18, nodal analysis

gives the terminal equations as
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Fig 1.18 An equivalent 7T circuit.

... (29)

Equating terms in admittance matrices of Eqgs. (27) and (29), we obtain

Note that in Figs. 1.17 and 1.18, the inductors are not magnetically coupled. Also note that

changing the locations of the dots in Fig. 1.16 can cause M to become —M .



Example 1.5/ Solve for I;,1, and V,, in Fig. 1.19 using the T-equivalent circuit for the linear

transformer.

il
40 \*
60,/90°V () ’/l_ll 8T Ej5Q "ﬁ V, 2100
h L >
° .

Fig 1.19 For Example 1.5.



1.5ldeal Transformers

An ideal transformer is one with perfect coupling (k = 1

W
s

). It consists of two (or more) coils with a large number of q »
™

turns wound on a common core of high permeability.

L W A
i

Because of this high permeability of the core, the flux links

all the turns of both coils, thereby resulting in a perfect

coupling, so a transformer is said to be ideal if it has the (@)

following properties:

N
I
-
Fa

1- Coils have very large reactances (Lq,L,, M — ) N -

2- Coupling coefficient is equal to unity (K = 0)

3- Primary and secondary coils are lossless(R; = R, = 0) (b)

Figure 1.20(a) shows a typical ideal transformer; the circuit ~ Fig 1.20 (a) Ideal transformer, (b)
circuit symbol for ideal

symbol is in Fig. 1.20(b). The vertical lines between the transformers.
coils indicate an iron core as distinct from the air core used
I I,
in linear transformers. The primary winding has N, turns; = 1l =
2
the secondary winding has N, turns. N “’_ o
veo iglleVa
When a sinusoidal voltage is applied to the primary - -
winding as shown in Fig. 1.21, the same magnetic flux ¢
goes through both windings. According to Faraday’s law, Fig 1.21 Relating primary and
: . secondary quantities in an ideal
the voltage across the primary winding and secondary };gnsformer.
winding are
dd ) dd v N In Phasor Vs, N,
vy =Ni— ' Uy =Ny ‘ - = ‘=n~ —=—=n --00
dt dt v N Vi M

where n is the turns ratio or transformation ratio.

For the reason of power conservation, the energy supplied to the primary must equal the energy

absorbed by the secondary, since there are no losses in an ideal transformer. This implies that

In Phasor -
I Va
1 _ Y2 _ .. (3D
I, Vv,

U1l1 = Ual




So, depending on the value of n, we can know the type of transformer as the following:-

1- n=1or V, =V, we generally call the transformer an isolation transformer.

2- n > 1or V, > V4, we have a step-up transformer.

3- n< 1or V, <V, we have a step-down transformer.

Power companies often generate at some convenient
voltage and use a step-up transformer to increase the
voltage so that the power can be transmitted at very high
voltage and low current over transmission lines, resulting
in significant cost savings. Near residential consumer
premises, step-down transformers are used to bring the

voltage down to 220 V.

It is important that we know how to get the proper polarity
of the voltages and the direction of the currents for the
transformer in Fig. 1.21. If the polarity of V; or V, or the
direction of I; or I, is changed, n in Egs. (30) and (31) may
need to be replaced by —n .The two simple rules to follow

are.

1- If V; and V, are both positive or both negative at the
dotted terminals, the transformer ratio will be +n .
Otherwise, use -n .

2- 2. If I, and I,both enter into or both leave the dotted
terminals, the transformer ratio will be +n .

Otherwise, use - n .

The rules are demonstrated with the four circuits in Fig. 1.22.
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Fig 1.22 Typical circuits illustrating

proper voltage polarities and

current directions in an ideal

transformer.



1.5.1 Compute Z;, of Ideal Trans formers

The input impedance as seen by the source in Fig. 1.21 is found from

Vi 1 V; Z, I, z

Z.in:]:_: 2 I ..(32) e l'n —= C
. L r:l—? ’_—f—:I—J

It is evident from Fig. 1.21 that V, /I, = Z, so that va (D) "_% EV2 C)va

Z_,i'_', -[ :»J } -[
Zy,=— ... (33) b d

" _ Fig 1.23 Ideal transformer circuit
The input impedance is also called the reflected whose equivalent circuits are to
: . . . . i be found.
Impedance, since it appears as if the load impedance is
reflected to the primary side. This ability of the « B, ,,b =
transformer to transform a given impedance into another ;f . ‘E f |‘1 ,,L v
. . i ] Th 13 ’f’: 2 =/ ¥n2
Impedance provides us a means of impedance matching - ] |
to ensure maximum power transfer. b @
In analyzing a circuit containing an ideal transformer, it is a A B
common practice to eliminate the transformer by T '.-; J%

o _ eV () ig[Ew Z,
reflecting impedances and sources from one side of the - - -
transformer to the other. In the circuit of Fig. 1.23, suppose b ®
we want to reflect the secondary side of the circuit to the Fig 1.24 (a) Obtaining Vi, for the
primary side. We find the Thevenin equivalent of the circuitin Fig. 1.23, (b) obtaining

Zp, for the circuit in Fig. 1.23.
circuit to the right of the terminals a-b. We obtain V;, as

the open-circuit voltage at terminals a-b, as shown in Fig.

1.24(a).

Since terminals a-b are open I; = 0 = I,, so that V, = V,,. Hence,
V, V.,

Ve =Vi=— "=~ ...(34)

To get we remove the voltage source in the secondary winding and insert a unit source at terminals

a-b, as in Fig. 1.24(b).

z - 171 B E'_'rl.-"f.i.i' - Z: V. = Z.1
Th I, nL 2 2 242 ...(35)




Once we have Vg, and Z;, we add the Thevenin
equivalent to the part of the circuit in Fig. 1.23 to the left

of terminals a-b. Figure 1.25 shows the result.

In the same strategy, we can also reflect the primary side
of the circuit in Fig. 1.23 to the secondary side. Figure 1.26

shows its equivalent circuit.

Also note that if the locations of the dots in Fig. 1.23 are
changed, we might have to replace n by —n in order to

obey the dot rule, illustrated in Fig. 1.22.

z 1 a n
—L o1 I
va © v A
b

Fig 1.25 Equivalent circuit for Fig.
1.23 obtained by reflecting the
secondary circuit to the primary

side.
.
n-Z 1 C‘ 2.:
- ."’- —..."-. - -/-—-.\.
Vs \=/ Vs =/

Fig 1.26 Equivalent circuit for Fig.
1.23 obtained by reflecting the
primary circuit to the secondary
side.

1.5.2 Complex Power of Ideal Transformers

The complex power in the primary winding is

S, =V,I; KvA ... (36)

AsV; =V,/n,I; =nl,, so Eq. (36) will be

S; = Vi1 = —(n)" = VL,I3 =S, .. (37)

Eq. (37) is showing that the complex power supplied to the primary is delivered to the secondary

without loss. The transformer absorbs no power. Of course, we should expect this, since the ideal

transformer is lossless.



Example 1.6/ Calculate the power supplied to the 10 Q resistor in the ideal transformer circuit

of Fig. 1.27.
200 )
W .'\.-'. 'v'. '-\.- .
+ | ]+
VIS E W2
Y == -7 e < 10
120,/0° V rms Z) /i‘l\) l (1, = 10 )
2300
|

Fig 1.27 For Example 1.6.



1.6 Ideal Autotransformers

Unlike the conventional two-winding transformer we have
considered so far, an autotransformer has a single
continuous winding with a connection point called a tap
between the primary and secondary sides. The tap is often
adjustable so as to provide the desired turns ratio for
stepping up or stepping down the voltage. This way, a
variable voltage is provided to the load connected to the

autotransformer.

Figure 1.28 shows a typical autotransformer. As shown in

Fig. 1.29, the autotransformer can operate in the step-

down or step up mode. The autotransformer is a type of

power transformer. Its major advantage over the two-

winding transformer is its ability to transfer larger 1 I

apparent power. Another advantage is that an

autotransformer is smaller and lighter than an equivalent @
a
two-winding transformer.  However, since both the

primary and secondary windings are one winding, —-

electrical isolation (no direct electrical connection) is lost.

Some of the formulas we derived for ideal transformers —

: N i
apply to ideal autotransformers as well. For the step-down __ -, : I :
autotransformer circuit:- ‘

M _M+th_ M .. (38) (b)

Vs _ N, N Fig 1.29 (a) Step-down
As an ideal autotransformer, there are no losses, so the autotransformer, (b) step-up

. . . autotransformer.
complex power remains the same in the primary and

secondary windings:

. - e . - s V: I]. I]. . ‘-l\ir:
S1 = Vali = S; = Var S B ity = VL = D 09




For the step-up autotransformer circuit:-

\ Vv, . ]
M__ V2 oM M ... (40)
:‘J—_ ;"url LR :‘J: V 2 N. 17 ‘M’J

The complex power given by Eq. (39) also applies to the step-up autotransformer so that Eq. (40)

again applies. Hence, the current relationship is

L M+tMN Ny ... (41)

=—_=]_— =

I N Ny
A major difference between conventional transformers and autotransformers is that the primary
and secondary sides of the autotransformer are not only coupled magnetically but also coupled
conductively. The autotransformer can be used in place of a conventional transformer when

electrical isolation is not required.



Example 1.7/ Refer to the autotransformer circuit in Fig. 1.30. Calculate: (a) I;and I, I, if Z; =

8 +j6 Q ,and (b) the complex power supplied to the load.

I &l 80 tums
—r_: il ZL
(] ? 120 turns
120,/30° V ms “_f. v, T
Iﬂ‘

Fig 1.30 For Example 1.7.



